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A gap among Architecture, 
Compiler and OS courses
main.c 
math.c

main.o 
math.o

a.out

Load a.out to mem
Manage mem for proc

Instruction
execution

compiler linker? loader

memory
management

arch
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Example
Main.c:

extern float sin( );
main( )
{
  static float x, val;
  
  
  printf(“Type number: ”);
  scanf(“%f”, &x);
  val = sin(x);
  printf(“Sine is %f”, val);
}

Math.c:

float sin(float x)
{
  static float temp1, temp2, result;
  
  – Calculate Sine –
  
  return result；
}
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Example (cont)

● Main.c uses externally defined sin() and C library 
function calls
● printf()

● scanf()

● How does this program get compiled and linked?



4

Compiler
● Compiler: generates object file

● Information is incomplete

● Each file may refer to symbols defined in other files
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Components of Object File
● Header

● Two segments
● Code segment and data segment
● OS adds empty heap/stack segment while loading

● Size and address of each segment
● Address of a segment is the address where 

the segment begins.
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Components of Object File  
(cont)
● Symbol table

● Information about stuff defined in this module

● Used for getting from the name of a thing (subroutine/variable) to the 
thing itself

● Relocation information

● Information about addresses in this module linker should fix

● External references (e.g. lib call)

● Internal references (e.g. absolute jumps)

● Additional information for debugger
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What could the compiler not 
do?
● Compiler does not know final memory layout

● It assumes everything in .o starts at address zero

● For each .o file, compiler puts information in the symbol table to tell the 
linker how to rearrange outside references safely/efficiently

● For exported functions, absolute jumps, etc
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Compiler: main.c

printf
scanf

sin

call 0

x, val

...
call 0
call 0

call 0

0x000

0x000

Data

Code

Relocation 
Records

main.o

main

main Symbol Table
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Compiler: math.c

float sin(..)

result

return result

0x000

0x000

Data

Code

math.o

sin

sin Symbol Table
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Linker functionality
● Three functions of a linker

● Collect all the pieces of a program

● Figure out new memory organization

● Combine like segments

● Does the ordering matter? (spatial locality for cache)

● Touch-up addresses

● The result is a runnable object file (e.g. a.out)
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Linker – a closer look
● Linker can shuffle segments around at will, but 

cannot rearrange information within a segment
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Linker requires at least two 
passes

● Pass 1: decide how to arrange memory

● Pass 2: address touch-up
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Pass 1 – Segment Relocation
● Pass 1 assigns input segment locations to fill-up 

output segments
● Read and adjust symbol table information

● Read relocation info to see what additional stuff 
from libraries is required
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Pass 2 – Address translation
● In pass 2, linker reads segment and relocation 

information from files, fixes up addresses, and 
writes a new object file

● Relocation information is crucial for this part
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Putting It Together
● Pass 1:

● Read symbol table, relocation table

● Rearrange segments, adjust symbol table

● Pass 2:
● Read segments and relocation information

● Touch-up addresses

● Write new object file
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Linker

float sin(..)

result

return result

0x000

0x000

math.o

sin

printf
scanf

sin

call 0

x, val

...
call 0
call 0

call 0

0x000

0x000

main.o

main
printf
scanf

call print

x, val, result

...
call print
call scanf

call sin

0x40001028

a.out

main

float sin(..)

return result

0x40001000 sin

Procedure Linkage 
Table (PLT)

0x40002000

Linker

sin

main

sin
main



17

Dynamic linking
● Static linking – each lib copied into each binary

● Dynamic linking: 
● Create wrapper code for library calls, a stub that finds lib 

code in memory, or loads it if it is not present

● Pros: 
● all procs can share copy (shared libraries)

● Standard C library

● live updates
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Dynamic loading
● Program can call dynamic linker via

● dlopen() 

● library is loaded at running time

● Pros: 
● More flexibility -- A running program can

● create a new program

● invoke the compiler

● invoke the linker

● load it!
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Memory Usage Classification
● Memory required by a program can be used in 

various ways

● Some possible classifications
● Role in programming language

● Changeability

● Address vs. data

● Binding time
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Role in Programming 
Language
● Instructions

● Specify the operations to be performed
on the operands

● Variables
● Store the information that changes as 

program runs

● Constants
● Used as operands but never change
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Changeability
● Read-only

● Example: code, constants

● Read and write
● Example: Variables
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Address vs. Data
● Need to distinguish between addresses    and 

data

● Why?
● Addresses need to be modified if 

the memory is re-arranged
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Binding Time
● When is the space allocated?

● Compile-time, link-time, or load-time 

● Static: arrangement determined once and for all

● Dynamic: arrangement cannot be determined until 
runtime, and may change
● malloc( ), free( )
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Classification – summary
● Classifications overlap

● Variables may be static or dynamic

● Code may be read-only or read and write
● Read-only: Solaris

● Read and write: DOS 

● So what is this all about?

● What does memory look like when a process is 
running?
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Memory Layout
● Memory divided into segments

● Code (called text in Unix terminology)
● Data
● Stack

● Why different segments?
● To enforce classification
● e.g. code and data treated differently at hardware level
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The big picture
● a.out needs address space for

● text seg, data seg, and (hypothetical) heap, stack

● A running process needs phy. memory for
● text seg, data seg, heap, stack

● But no way of knowing where in phy mem at
● Programming time, compile time, linking time

● Best way out?
● Make agreement to divide responsibility

● Assume address starts at 0 at prog/compile/link time

● OS needs to work hard at loading/runing time
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Big picture (cont)
● OS deals with physical memory

● Loading

● Sharing physical memory between processes

● Dynamic memory allocation
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Connecting the dots

main.c 
math.c

main.o 
math.o

a.out

Load a.out to mem
Manage mem for proc

Instruction
execution

compiler linker loader

memory
management

arch

Logical memory

Logical memory &
Physical memory

OS
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Process memory map

Copied from: https://manybutfinite.com/post/anatomy-of-a-program-in-memory/

JOS Kernel 
(0-64KB)

Free (576KB)
(64KB-640KB)

JOS

On ubuntu (check kernel map): sudo cat /proc/iomem 
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Easier context-switch

Copied from: https://manybutfinite.com/post/anatomy-of-a-program-in-memory/
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Loading

Header

Text

Data

a.out file Process

Text
segment

Data

Heap

Stack

Text size

Data size
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Dynamic memory allocation
during program execution
● Stack: for procedure calls

● Heap: for malloc()

● Both dynamically growing/shrinking

● Assumption for now: 
● Heap and stack are fixed size

● OS has to worry about loading 4 segments per process:
● Text

● Data

● Heap

● stack
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Process Virtual Memory Layout

● OS allocates a separate virtual 
memory space to each process

● Transparency
● Do not have to worry about a 

system’s memory usage 
status

● Isolation
● Others can’t access my 

virtual memory space

OS
0xc000000 ~ 0xffffffff

(1GB)

Stack

0xc0000000

0xffffffff

0x08048000

Program code/data

heap

Libraries

KERNEL

User
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OS
0xc000000 ~ 0xffffffff

(1GB)

Stack

0xc0000000

0xffffffff

0x08048000

Program code/data

heap

Libraries

OS
0xc000000 ~ 0xffffffff

(1GB)

Program code/data

heap

Libraries

Stack

Shared kernel mapping

Why kernel is 
mapped in all 
user processes? 

Easier 
context-switch
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Memory Maps on x64 machine
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Memory Maps on x64 machine
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How does OS ensure a user process does 
not access kernel memory?

● OS needs to ensure that a user process cannot access (read/write) kernel (or OS 
memory)?
● Why?

● Hint: Security!
▪ Remember: sudo!? 



38

How does OS ensure a user process does 
not access kernel memory?

● OS needs to ensure that a user process cannot access (read/write) kernel (or OS 
memory)?
● Why?

● Hint: Security!
▪ Remember: sudo!? 

● Permissions bits in Page directories and Page Tables!!
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Page Directory / Table Entry (PDE/PTE)

● Top 20 bits: physical page number
● Physical page number of a page table (PDE)
● Physical page number of the requested virtual address (PTE)

● Lower 12 bits: some flags
● Permission
● Etc.
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Permission Flags

• PTE_P (PRESENT)
• 0: invalid entry
• 1: valid entry

• PTE_W (WRITABLE)
• 0: read only
• 1: writable

• PTE_U (USER)
• 0: kernel (only ring 0 can access)
• 1: user (accessible by ring 3)

Page Table Entry

0 Addr PT

0x48 0x10000 << 12 | PTE_U | PTE_W

0x49 0x11000 << 12 | PTE_P | PTE_W

0x4a 0x50000 << 12 | PTE_P | PTE_U

Invalid

Kernel, writable

User, read-only

40
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When CPU Checks Permission Bits?

• In address translation

• 1. Virtual address

• 2. PDE = CR3[PDX]
• Checks permission bits in PDE

• 3. PTE = PDE[PTX]
• Checks permission bits in PTE

Page number (20-bits)
0x08048

Offset (12-bits)
0x000

Directory Index
(10-bits)

0x20

Table index
(10-bits)

0x48

122231

0x08048000

Page Directory 
Entry

0 Addr PT | P | U | W

0x20 Addr PT | P | U | W

0x30 Addr PT | P | U | W

0x3ff Addr PT |    | U | W

Page Table Entry

0 0x0 | P | U | W

0x48 0x10000 | P | U | W

0x49 0x11000 | P | W

0x4a 0x50000 | U | W

CR3[0x20]

PDE[0x48]

Mem access
#1

Mem access
#2 Perm check!
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When CPU Checks Permission Bits?

• A virtual memory address is inaccessible if PDE disallows the access

• A virtual memory address is inaccessible if PTE disallows the access

• Both PDE and PTE should allow the access…
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PDE/PTE Permission Examples 0

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W | PTE_U

• PTE: PTE_P | PTE_W | PTE_U

•  Can user (ring 3) access it? Is it writable?

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)
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PDE/PTE Permission Examples 0

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W | PTE_U

• PTE: PTE_P | PTE_W | PTE_U

•  Can user (ring 3) access it? Is it writable?

• Valid, accessible by ring 3, and writable

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)



45

PDE/PTE Permission Examples 1

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W | PTE_U

• PTE: PTE_P | PTE_U

•  Can user (ring 3) access it? Is it writable?
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PDE/PTE Permission Examples 1

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W | PTE_U

• PTE: PTE_P | PTE_U

•  Can user (ring 3) access it? Is it writable?
• Valid, accessible by ring 3, but not writable
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PDE/PTE Permission Examples 2

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_U

• PTE: PTE_P | PTE_W | PTE_U

•  Can user (ring 3) access it? Is it writable?
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PDE/PTE Permission Examples 2

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_U

• PTE: PTE_P | PTE_W | PTE_U

•  Can user (ring 3) access it? Is it writable?
• Valid, accessible by ring 3, but not writable
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PDE/PTE Permission Examples 3

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W | PTE_U 

• PTE: PTE_P

•  Can user (ring 3) access it? Is it writable?
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PDE/PTE Permission Examples 3

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W | PTE_U 

• PTE: PTE_P

•  Can user (ring 3) access it? Is it writable?

• valid, inaccessible by ring3, not writable
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PDE/PTE Permission Examples 4

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W

• PTE: PTE_P | PTE_U 

•  Can user (ring 3) access it? Is it writable?
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PDE/PTE Permission Examples 4

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_W

• PTE: PTE_P | PTE_U 

•  Can user (ring 3) access it? Is it writable?

• valid, inaccessible by ring3, not writable
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PDE/PTE Permission Examples 5

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_U

• PTE: PTE_U

• Can user (ring 3) access it? Is it writable?
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PDE/PTE Permission Examples 5

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_P | PTE_U

• PTE: PTE_U

• Can user (ring 3) access it? Is it writable?
• invalid
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PDE/PTE Permission Examples 6

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_U

• PTE: PTE_P | PTE_U

•  Can user (ring 3) access it? Is it writable?
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PDE/PTE Permission Examples 6

• PTE_P (PRESENT)

• 0: invalid entry

• 1: valid entry

• PTE_W (WRITABLE)

• 0: read only

• 1: writable

• PTE_U (USER)

• 0: kernel (only ring 0 can access)

• 1: user (accessible by ring 3)

• Virtual address 0x01020304

• PDE: PTE_U

• PTE: PTE_P | PTE_U

•  Can user (ring 3) access it? Is it writable?
• invalid
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Valid permission bits..

• Kernel: R, User: --
• PTE_P

• Kernel: R, User: R
•  PTE_P | PTE_U 

• Kernel: RW, User: RW
•  PTE_P | PTE_U | PTE_W
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Cannot have permissions such as …

• Kernel: RW, User: R
• PTE_P | PTE_W | PTE_U -> User RW…
• PTE_P | PTE _W  -> User --

• Kernel: R, User: RW
•  PTE_P | PTE_U | PTE_W -> Kernel RW…
•  PTE_P | PTE_U      -> User R…

• Kernel: --, User: RW
•  PTE_P | PTE_U | PTE_W -> Kernel RW…
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Flexibility of virtual memory!

• Virtual to physical address mapping is in N-to-1 relation
• N number of virtual addresses could be mapped to 1 physical address

• E.g., for a physical address 0x100000
• JOS maps VA 0x100000 to PA 0x100000
• JOS maps VA 0xf0100000 to PA 0x100000

• Why?
• EIP before enabling paging: 0x100025
• EIP after enabling paging: 0x100028
• Then jumps to 0xf010002f



60

Sharing a Physical Page!

• Example: Loading of the same program

Process 0, runs /bin/bash,
loads at virt addr 
0x35555000

Process 1, runs /bin/bash,
loads at virt addr 
0x43132000

Physical 
memory

/bin/bash at 
Phys addr 0x10303000

Page Table Entry

0 …
0x155 0x10303 | FLAG

Page Table Entry

0 …
0x132 0x10303 | FLAG

2 or more mappings to 0x10303000 is 
possible!
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Allocating Virtual Memory

● Static allocation is inefficient:
○ Why don’t we just allocate entire virtual address space to a 

process?
○ Inefficient: The process may not access entire virtual address 

space

● Solution: Dynamic, Request based
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Dynamic space allocation

● OS allocates space (valid PTE entries in page table) as dictated by 
the program binary and start running the process.
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Dynamic space allocation

● When a process tries to access memory that is not allocated i.e., 
there is no corresponding valid PTE, then, OS kills the process.
○ E.g., Segmentation Fault! 

● A process needs to explicitly request OS to allocate additional 
space (and create valid PTEs).
○ brk system call (We will cover this later)
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Dynamic space allocation

● We use malloc and free, which actually use brk system call 
internally

● brk only allocates virtual memory! not physical memory!
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Dynamic space allocation: Example

#include<stdio.h>

#include<stdlib.h>

int main() {

char p;

int *i = (int *)malloc(16*1024*1024*1024);

printf("We just requested 16GB of virtual memory!!\n");

printf("Check memory now, using htop!\n");

printf("You will be surprised to see your memory usage.\nPress any key to exit.\n");

scanf("%c", &p);

return 0;

}



66

What happens when we call malloc?

● Before malloc()?
○ No PTEs

● After malloc()?
○ PDE/PTE updated but present bit not-set

● Upon first access?
○ Assign physical page (and page table) and set the valid bit.
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Handling Page faults in Kernel
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Handling Page faults in Kernel

● Accessing Unassigned 
Virtual Memory: 
Segmentation Fault

● Accessing 
unallocated memory: 
Demand Paging


